Synaptic Plasticity in Local Networks of Neocortical Layer 2 / 3 Misha Zilberter
نویسنده
چکیده
The neocortex is a hierarchal organ in which information processing takes on place on many levels, from subcellular signalling all the way to neural networks. Neocortical local neuronal networks (microcircuits), composed of interconnected neurons, form elementary information processing units within the cortex. Pyramidal cells, the primary glutamatergic cells in the cortex, receive synaptic input both from within the neocortex and from more distant cortical and sub-cortical regions. The strength of these inputs can be modified on various time scales. The strength of pyramidal-pyramidal (P-P) cell unitary connections can be modified long-term, depending on the timing of action potentials (APs) in the preand post-synaptic cells (spike-timing dependent plasticity, STDP). We reported that the learning rule governing STDP modification is regulated by preceding activity in a postsynaptic neuron. Moreover, we have shown that the difference between STDP observed at layer 2/3 (L2/3) P-P cell connections and STDP studied at other excitatory connections in the neocortex is attributed to a fundamental difference in synaptic properties, suggesting that a L2/3 pyramidal cell is able to recognize its presynaptic partner and form physiologically distinct synapses based on the origin of input. Additionally, the time-window for the induction phase of spike timingdependent long-term potentiation (STD-LTP) and depression (LTD) at L2/3 P-P connections and its dependence on post-synaptic cell spine calcium concentrations was further examined using data-based computational modelling. We have shown that the resulting synaptic gain change depends on a 15 ms window following synaptic activation. Our data suggested a theoretical enzyme-like Ca sensor that could account for the observed synaptic gain changes in L2/3 P-P connections. Synaptic LTP is thought to be a crucial component underlying learning and memory. Neurodegenerative disorders, such as the Alzheimer’s disease (AD) are commonly associated with cognitive impairment and memory loss. We reported that STD-LTP induction at excitatory inputs onto L2/3 pyramidal cells in a mouse model of Alzheimer’s disease was impaired as early as at 3.5 months of age, at the very onset of AD-like pathology and prior to amyloid plaque formation. STD-LTP was also abolished at L2/3 P-P connections in wild-type brain slices after soluble non-fibrillar A(25-35) application. The underlying mechanism was the selective A-induced reduction of AMPAR-mediated currents. Meanwhile, STD-LTP induction could be rescued by application of AMPAR desensitization antagonist, cyclothiazide. Thus, we have demonstrated a novel target for AD pathology as well as a means of rescuing STDP under AD’s neurodegenerative conditions. Synaptic plasticity consists of multiple variations in synaptic gain taking place over different time scales and between different cell types. In another instance, inhibitory connections from FSN interneuron onto the pyramidal cell can undergo short-term changes in synaptic gain following a postsynaptic AP burst. Previous studies suggested that retrograde dendritic release of glutamate regulates such short-term changes. We further clarified the molecular mechanism of retrograde signalling by showing the SAT2-mediated glutamine transport to be is a necessary precursor for retrograde signalling at FSN-pyramidal cell connections, substantiating the role of glutamate as a retrograde messenger at this synapse.
منابع مشابه
Input specificity and dependence of spike timing-dependent plasticity on preceding postsynaptic activity at unitary connections between neocortical layer 2/3 pyramidal cells.
Layer 2/3 (L2/3) pyramidal cells receive excitatory afferent input both from neighbouring pyramidal cells and from cortical and subcortical regions. The efficacy of these excitatory synaptic inputs is modulated by spike timing-dependent plasticity (STDP). Here we report that synaptic connections between L2/3 pyramidal cell pairs are located proximal to the soma, at sites overlapping those of ex...
متن کاملEffects of visual deprivation on synaptic plasticity of visual cortex
TBS (Theta Burst Stimulation) and PBs (Primed Bursts) are among effective tetanic stimulations for induction of LTP in hippocampus. Recent studies have indicated that TBS is effective in LTP induction in layer III synapses of neocortex, only if applied to layer IV. However, the possibility of neocortical LTP induction using PBs, has not yet been investigated. Sensory deprivation greatly influ...
متن کاملDendritic release of retrograde messengers controls synaptic transmission in local neocortical networks.
The contribution of retrograde signaling to information processing in the brain has been contemplated for a long time, especially with respect to central nervous system development and long-term synaptic plasticity. During the past few years, however, the concept of retrograde signaling has been expanding to include short-term modifications of synaptic efficacy. The classic point of view on syn...
متن کاملPyramidal cell communication within local networks in layer 2/3 of rat neocortex.
The extent to which neocortical pyramidal cells function as a local network is determined by the strength and probability of their connections. By mapping connections between pyramidal cells we show here that in a local network of about 600 pyramidal cells located within a cylindrical volume of 200 microm x 200 microm of neocortical layer 2/3, an individual pyramidal cell receives synaptic inpu...
متن کاملEffects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008